This exciting PhD project opportunity will be based at University of Edinburgh with a three month placement with IBioIC member company ScotBio, and is part of the IBioIC CTP programme.

Project description

Trends for ‘clean labels’ (e.g. 61% of global consumers actively try to avoid artificial colours) have driven brands to commit to removing artificial colours from their products. Since its approval by the US FDA as “globally recognised as safe”, cyanobacterial (most commonly Spirulina) phycocyanin (PC) has become the natural blue colourant of choice for use in food and cosmetics. PC is a photosynthetic pigment of the phycobili protein family, expressed by prokaryotic cyanobacteria and eukaryotic red algae. Phycobili proteins assemble into distinct granules, phycobilisomes, which are considered analogous to the chlorophyll-containing light harvesting complexes found in green plants. Spirulinaphycobilisomes consist of Allophycocyanin (A-PC) and C- phycocyanin (C-PC) with C-PC being the main blue component. C-PC consists of two subunits, which can assemble into a variety of oligomeric states, depending on the concentration of C-PC, pH, temperature and presence of other components.

In order to create a more robust product with a wider range of applications, it is essential to control the oligomerisation state of C-PC. This project will determine the necessary factors that influence C-PC stability and oligomerisation. Subsequently, strategies to tune oligomerisation and enhance protein stability will be developed, which will have broader implications for the stabilisation of industrially-relevant proteins.

The appointed student will undertake a placement with the industrial partner, ScotBio, for at least 3 months during the study.

The PhD Studentship will be part of the IBioIC CTP programme.

Find out more about this opportunity and apply.